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which is 1.260,25 1.260,17 1.277,18 and 1.283 A,5 respectively, for 
the above four complexes. Key band assignments are given in 
Tables IV and V. 

Conclusion 
Raman spectra of (^(C^CCH^^C^ taken at resonance with 

the axially polarized 383-nm band (ir(Cl) -» ir*(Os2))6 are 
characterized by long progressions in which the (axial) mode, V1, 
e(OsOs) at 229 cm"1 acts as the progression-forming mode. This 
behavior, which is characteristic of A-term resonance Raman 
scattering of a lg modes,26 implies that the structural change 

(25) Meester, P.; Fletcher, S. R.; Skapski, A. C. J. Chem, Soc, Dalton 
Trans. 1973, 2575-2578. 

(26) Clark, R. J. H.; Dines, T. J. Angew. Chem., Int. Ed. Engl. 1986, 25, 
131-158. 

1. Introduction 

Photochemical and spectroscopic properties of electronically 
excited molecules are frequently rationalized by referring to the 
form of the excited state potential energy surface. A photo
chemical reaction starts along that direction on the excited-state 
surface which leads to the smallest energy increase or even an 
energy minimum. Provided the pathway for an energy decrease 
is identical with a normal mode, a long vibrational progression 
in that mode may be observed in highly resolved electronic spectra. 

Large scale configuration interaction methods proved to be 
reliable for the calculation of excited state potential energy sur
faces.1 The computational effort, however, would be diminished 
if a qualitative procedure were available predicting directions on 
the surface which are energetically favorable. Such a scheme 
would also be of use for the interpretation of large scale ab initio 
results, where a qualitative explanation of reliable results is often 
obscured by a maze of numbers. For ground-state surfaces the 
Bader-Pearson concept2"4 relates explicitly the symmetry of the 
total wave function and the symmetry of reaction pathways. The 
essence of this concept is that the direction of a particular nuclear 
motion is energetically favorable if the electronic charge density 

(1) For a review, see: Hirst, D. M. Adv. Chem. Phys. 1982, SO, 517. 
Bruna, P. J.; Peyerimhoff, S. D. Adv. Chem. Phys. 1987, 67, 1. 

(2) Bader, R. F. W. Can. J. Chem. 1962, 40, 1164. Bader, R. F. W. MoI. 
Phys. 1960, 3, 137. 

(3) Pearson, R. G. Symmetry Rules for Chemical Reactions; Wiley: New 
York, 1976. 

(4) Pearson, R. G. J. MoI. Struct., Theochem. 1983, 103, 25. 

consequent upon excitation to the resonant 7r*(Os2) electronic state 
is substantial and principally along the Os-Os coordinate. The 
wavenumber of vx is only slightly greater than that (~220 cm"1)6 

detected as structure to the long wavelength electronic bands of 
the complex, such as that (S —- 8*) at ca. 850 nm; clearly, the 
progression-forming mode in the electronic bands is likewise v-
(OsOs), although the small ground-state to excited-state wave-
number change for vx in these bands implies that, for such excited 
states, only very small changes occur to the osmium-osmium bond 
length. 
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can follow the motion easily. This simple concept led to a com
prehensive rationalization of ground-state chemistry.3 It has 
recently been incorporated by Bader into his theory of chemical 
reactivity which is based on a spatial partitioning of the electronic 
charge density.5 

Few attempts have been made to apply the Bader-Pearson 
concept to electronically excited-state surfaces. A general rule 
for predicting the geometry of electronically excited molecules 
has been derived,6 but for conjugated molecules it had to be 
extended.7 Devaquet generalized the Bader-Pearson concept to 
first excited states8 and applied it to a variety of electronically 
excited molecules.8,9 However, in several instances it seemed 
difficult to discriminate between alternative directions for re
laxation pathways. Nakajima analyzed carbon-carbon bond 
length changes of conjugated molecules following electronic ex
citation.7 The bond length changes are correctly predicted, but 
molecular oribtals for cr-electrons are not explicitly considered. 
This restriction limits the procedure to nuclear motions in which 
planarity is retained. Bond length changes following electronic 
excitation can also be deduced from the AP-matrix as suggested 
by Zimmerman.10 This matrix is defined as the difference be-

(5) Bader, R. F. W.; MacDougall, P. J. J. Am. Chem. Soc. 1985, 107, 
6788. 

(6) Pearson, R. G. Chem. Phys. Lett. 1971, 10, 31. 
(7) Nakajima, T.; Toyota, A.; Kataoka, M. J. Am. Chem. Soc. 1982,104, 

5610. Nakajima, T.; Toyota, A.; Fujii, S. Bull. Chem. Soc. Jpn. 1972, 45, 
1022. 

(8) Devaquet, A. J. Am. Chem. Soc. 1972, 94, 5626. 
(9) Devaquet, A. J. Am. Chem. Soc. 1972, 94, 9012. 
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Abstract An extension of the Bader-Pearson concept to nondegenerate first excited states is presented which permits a qualitative 
determination of the relaxation pathway along which the molecular geometry changes following electronic excitation. A symmetry 
criterion for the relaxation pathway has been developed, according to which the most favored path is that which permits coupling 
of the first excited state with a large number of higher excited states close to the first excited state. Excited-state geometries 
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superposition. After determining the relevant symmetry species, the pathway is specified in greater detail by inspection of 
plots of the overlap function between interating orbitals, and a procedure for using such plots is described. 
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tween the bond order matrix for the excited state and that for 
the ground state. The primary assumption is that bond length 
changes of a bond r-t are related to the corresponding matrix 
elements APn. A negative APn indicates that in the excited state 
the bond should be weakened; a positive number implies bond 
tightening10. In addition, a partitioning of the analytic expression 
for the excitation energy AE led to energy increments AEn which 
refer to a bond.11 The quantities APn and AEn have been used 
to identify those parts of a molecule which carry the electronic 
excitation energy.11 They are useful for a neat rationalization 
of a broad range of photochemistry and a detailed analysis of the 
di-ir-methane rearrangement has been performed.12 Recently, 
Morrison et al. applied difference density plots between the first 
excited state and the ground state to visualize electron density 
changes accompanying the excitation process.13 The plots in
dicated well the bond strength changes which followed the ex
citation process.13 These plots could be applied for a qualitative 
prediction of excited-state geometries. One could use the 
ground-state geometry for calculating the difference density 
distribution. This choice is suggested by the expectation that such 
difference density distributions contain information about how 
the excited state geometry differs from that of the ground state. 
Difference density distributions calculated at the ground-state 
geometry transform totally symmetric in the ground-state point 
group. Therefore, their use is only appropriate for excited-state 
geometries which might be different from that of the ground state, 
but where the ground-state point group is retained. Many excited 
states, however, have a geometry with lower symmetry, where the 
ground-state point group is not preserved. It is this symmetry 
lowering which can be treated by means of the Bader-Pearson 
concept. 

In this paper we extend the Bader-Pearson concept to nuclear 
motions on the first excited state potential energy surface more 
rigorously than has been done previously. In the subsequent paper 
applications are presented which demonstrate that this procedure 
is a valuable qualitative tool. 

2. Theoretical Background 
Consider a molecule in its ground-state equilibrium geometry 

having a point group G. A vertical electronic excitation to the 
first excited state leads to a point on its surface where the 
ground-state point group G is still retained.14 Afterwards, in a 
time interval of about ICT12 s,15 the nuclear framework rearranges 
along a relaxation pathway which leads to the excited-state 
minimum geometry. By analogy with the procedure of Rodger 
and Schipper,16 any geometry change in that direction can be 
represented as a linear combination of symmetry coordinates, S(, 
which form a complete set, and are symmetry adapted in G. Our 
objective was to design a qualitative procedure to determine which 
S1- dominate such a superposition. Devaquet assumed implicitly 
that only one S( is important and that this S1 is the relaxation 
pathway.8 However, the more general case is that a geometry 
change is a superposition of various S1- transforming as different 
symmetry species. An example is the TT-JT* excited-state geometry 
of trans-butadiene which is reached by lowering the C2/, 
ground-state symmetry along a rotation of only one methylene 
group. Such a rotation is a superposition of bg and au symmetry 
coordinates, and here the relaxation pathway transforms as a 

(10) Zimmerman, H. E.; Gruenbaum, W. T.; Klun, R. T.; Steinmetz, M. 
G.; Welter, T. R. J. Chem. Soc, Chem. Commun. 1978, 328. Zimmerman, 
H. E.; Steinmetz, M. G. J. Chem. Soc, Chem. Commun. 1978, 300. 

(11) Zimmerman, H. E.; Cutler, T. P. J. Org. Chem. 1978, 43, 3283. 
(12) Zimmerman, H. E. Ace. Chem. Res. 1982, 15, 312 and references 

cited therein. 
(13) Morrison, H.; Miller, A.; Pandey, B.; Pandey, G.; Severance, D.; 

Strommen, R.; Bigot, B. Pure Appl. Chem. 1982, 54, 1723. Morrison, H.; 
Jorgensen, W. L.; Bigot, B.; Severance, D.; Munoz-Sola, Y.; Strommen, R.; 
Pandey, B.; J. Chem. Ed. 1985, 62, 298. 

(14) Herzberg, G. Molecular Spectra and Molecular Structure; van 
Nostrand; New York, 1966; Vol. Ill, p 172. 

(15) See, for example: Williams, F.; Berry, D. E.; Bernard, J. E. In 
Radiationless Processes; Bartolo, B. Di, Ed.; Plenum Press: New York, 1980; 
p 1, see in particular p 3. 

(16) Rodger, A.; Schipper, P. E. Chem. Phys. 1986, 107, 329. 

reducible representation in C2/,. In order to have access to these 
low-symmetry cases we assume that the excited-state minimum 
geometry is reached by a distortion along two symmetry coor
dinates, S1- and Sp transforming as the irreducible representations 
TSl and TSj, respectively, of G. If T3. and TSj are different, this 
scheme includes pathways transforming as a reducible repre
sentation of G, as in the ease of trans-butadiene. 

After stating the symmetry features of our model, we are 
interested in the energy change arising from a geometry distortion 
along S, and Sj. We assume that the electronic Schroedinger 
equation at the ground-state geometry, designated by (0,0), can 
be solved for all electronic states k 

//(0,0) * t(0,0) = Ek{0fi) *t(0,0) (1) 

The electronic Hamiltonian //(AS11ASy) corresponding to the 
distorted geometry can be expanded into a Taylor series about 
the ground-state molecular geometry 

//(AS,-, AS,) = 

//10AS,- + H01ASj + ^H20ASj + HnAS1ASj + ^H02ASj (2) 

Here, the derivatives of the Hamiltonian with respect to S,- and 
Sj are denoted by the symbol If""; a particular H7"" is defined by 
its corresponding term in the expansion (2). The wave functions 
and energies of the new geometry can also be expanded into a 
Taylor series. If we assume the first excited state is nondegenerate 
and that the derivatives of the first excited state wave function 
with respect to S1 and Sj can be represented with sufficient ac
curacy by a linear combination of n functions 0^(0,0) (k = 0, 1...« 
- 1), nondegenerate double perturbation theory can be applied.17 

Here, we give only the final expression for the energy at point 
(AS1, ASy) on the first excited state surface; the formula is valid 
up to second order in the distortions AS, and AS7 

E1(AS1, AS.) = E00 + (I0 0IZZ1 0II0 0)AS; + <l00 | /^1 | l00)AS i + 
(a) (b) 

- j ( l0 0 | /^° | l0 0)AS2 + (I00I//02! 1°°>AS2} + 
2 (c) (d) 

1 n ( I 0 0 I / / 1 0 ^ 0 0 ) 2 

(I00IZZ11Il00) ASiASj + -Z'—^-—0rAS? + 
(e) 2*=o E1

0O-Ei?0 

(f) 
1 n (I00IZZ01IA:00)2 

-E'-—!—'—-AS2 + 
2k% E1

0O-E1
00 ' 

(8) n (I0 0IZZ1 0^0 0XAT0 0IZZ0 1II0 0) 

£ / :—! !—il—! !—IAS1AS,- (3) 
/w> E1

00 -Ek°° ' jK ' 
(h) 

The primes attached to the summation signs mean that the 
contribution for A; = 1 is to be omitted. Equation 3 can also be 
derived, without using perturbation theory, by forming first- and 
second-order derivatives of the first excited state energy with 
respect to S1- and Sj, taken at the ground-state geometry.18 

3. Symmetry Analysis and Preferred Geometry Relaxations 
In the previous section we showed that the energy of a molecule, 

after vertical excitation involving a change of geometry along the 
symmetry coordinates S1- and Sj, is given by eq 3. Here, we apply 
symmetry arguments which lead to a simple rule for excited-state 
surfaces and to an assessment of the validity of the second-order 
approximation used in eq 3. 

(17) Hirschfelder, J. O.; Byers Brown, W.; Epstein, S. T. Adv. in Quant. 
Chem. 1964, /, 255. 

(18) Byers Brown, W. Proc Cambridge Phil. Soc. 1958, 54, 251. Goo-
disman, J. In Diatomic Interaction Potential Theory; Academic Press: New 
York, 1973; p 178. Barentzen, H., private communication. 
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The superscripts m and n of the operators H™ in (3) designate 
the /nth and nth derivative of the electronic Hamiltonian with 
respect to 5, and Sj, respectively, taken at the ground-state ge
ometry with point group G. The operators H10 in (3a) and H01 

in (3b) transform as rS( and TSj, respectively, which are the 
irreducible representations of the symmetry coordinates St and 
Sj. Because the first excited state is assumed to transform as a 
nondegenerate irreducible representation T1Oo of G, (3a) and (3b) 
vanish in the case where rS( and IY are nontotally symmetric.19 

The contributions (3a) and (3b) are the first derivatives of the 
energy with respect to S, and S,,20 respectively. Using the above 
symmetry argument and the meaning of (3a) and (3b), a simple 
but general rule for the surface of a nondegenerate first excited 
state holds:21 the potential energy surface, represented as a 
function of two nontotally symmetric nuclear distortions S1 and 
Sj, has a minimum, a maximum, or a saddle point, located at the 
ground-state geometry. The special case for a distortion along 
one Sj is known for many molecules, and we mention two prom
inent examples: the first excited n-ir* state surface of form
aldehyde has a maximum at the planar minimal C10 ground-state 
geometry when this surface is plotted as a function of the non
totally symmetric pyramidalization coordinate,22 and the X-TT* 
state energy surface of ethylene has a maximum at the planar 
Dlh ground-state geometry when it is represented as a function 
of the nontotally symmetric twisting motion.23 Another conse
quence of the symmetry rule for (3a) and (3b) is that photodis-
sociations on excited-state surfaces, having at any point of the 
pathway a nonvanishing derivative with respect to the pathway 
coordinate, should not proceed along nontotally symmetric co
ordinates of the ground-state point group. 

The contributions (3c), (3d), (3e) refer to motions of the nuclei 
in the unrelaxed charge distribution24 of the first excited state. 
Consequently, they inhibit a geometry change toward the first 
excited-state minimum. The second-order contributions which 
favor a geometry change are the terms (30. (3g), and (3h). The 
derivation using double perturbation theory17 shows that they 
describe electronic relaxations24 and that they are energy lowering. 
Only those members of the sums in (3f), (3g), and (3h) can 
contribute for which the triple direct products T1M X IY1 X Tkx 
and/or T1M X IY X T̂ M contain the totally symmetric repre
sentation. Because G is assumed to have only nondegenerate 
representations, a coupling of 5,- and Sj in (3h) occurs only when 
IY1 and IY1 are identical. This case is important, because for one 
irreducible representation various symmetry coordinates might 
exist. 

In many instances the geometry change following vertical ex
citation leads to a symmetry lowering. From the analysis of 
Rodger and Schipper such a symmetry decrease can only occur 
along nontotally symmetric S1 and/or Sj.25 Because we assume 
that the first excited state is nondegenerate by symmetry, the only 
terms which can induce an energy lowering symmetry decrease 
are the second-order contributions (3f-h). If the symmetry low
ering pathway is entered, we could employ the continuity principle 
of Rodger and Schipper16 to repeat the symmetry analysis at the 
new geometry with lower point group symmetry. This would lead 
to nonvanishing first-order terms (3a) and/or (3b) because the 
formerly induced relaxation pathway would be totally symmetric 
in the smaller group. If we apply Pearson's rule that a pathway 
is totally symmetric in the retained group,26 we conclude that the 
smaller group is retained, because now the first-order terms (3a) 
and (3b) outweigh the second-order terms. The symmetry low
ering is induced at a stationary point16 by the second-order terms 

(19) See ref 16, in particular theorem 1 on p 335 for the case (ii). 
(20) See ref 3, p 14. 
(21) For ions of molecules this rule is contained in Figure 12 of p 477 of 

ref 3; for electronic excitations, see: Clark, R. J. H.; Stewart, B. Struct, and 
Bonding 1979, 36, 1, in particular p 14. 

(22) Buenker, R. J.; Peyerimhoff, S. D. J. Chem. Phys. 1970, S3, 1368, 
Figure 12. 

(23) Mulliken, R. S.; Ermler, W. C. Polyatomic Molecules; Academic 
Press: New York, 1981; p 225, Figure 5. 

(24) Salem, L. Chem. Phys. Lett. 1969, 3, 99. 
(25) See ref 16, in particular case (a) on p 331. 
(26) Pearson, R. G. Ace. Chem. Res. 1972, 4, 152, 153. 

(3f-h), but it is preserved along the path by the first-order con
tributions (3a) and (3b). These considerations suggest that in 
spite of eq 3 being based on a second-order approximation, it 
should also be valid for larger steps along the relaxation pathway. 

4. Selecting the Preferred Relaxation Pathway 
In this section we apply eq 3 to design a qualitative procedure 

for determining the pathway along which the molecular geometry 
relaxes on the first excited state potential energy surface after 
vertical electronic excitation. In accordance with the Bader-
Pearson concept,2"4 our criterion for a relaxation path is that the 
energy lowering parts of (3f-h) should be large. Here, we illustrate 
how this criterion can be used. 

Consider a relaxation pathway composed of two symmetry 
coordinates 5, and S1. In many instances all three relaxation terms 
(3f-h) are important, and we need to be able to collect (3f-h) 
into one compact expression. This is achieved by defining a new 
operator Ox

1, the sum of H10 and H01 

Ox
1 = Hw + H°] (4) 

Depending on the symmetry of St and Sj, Ox transforms either 
as an irreducible or as an reducible representation Tx of G. 
Because Ox

1 is a multiplicative operator, all energy-lowering 
contributions of (3f-h) can be collected in one term, Rx, called 
the relaxation term, which also contains a possible coupling be
tween Sj and Sj 

I * (I00KVl*00)2 

The sum ranges only over those states above the first excited state 
which have the proper symmetry, such that for any k the direct 
product T1M X Tx X r̂ oo contains the totally symmetric repre
sentation. There are «x states meeting this requirement. If Rx 
is approximated by the first member of the sum in eq 5 (k = 2), 
we arrive at the assumptions of Devaquet: A molecule in its first 
excited state relaxes along the pathway which has the proper 
symmetry to permit a coupling between the first and second excited 
state.8 Such a strong coupling is also the basis for the proximity 
effect on relaxation pathways and spectroscopic properties of 
heterocyclic compounds as recently discussed by Lim.27 On the 
basis of eq 5, Devaquet's assumption8 is easily recognized as a 
special case of two more general conditions for a relaxation 
pathway: (i) The symmetry Tx of a relaxation pathway should 
be appropriate for a large number of higher excited states to 
interact with the first excited state. In addition, they should be 
energetically close to the first excited state. 

However, knowing only Tx for the pathway is insufficient be
cause various nuclear motions all transforming as Tx can be 
present. In order to select the relaxation pathway from the variety 
of paths, the following condition is suggested, (ii) From the 
manifold of pathways transforming as Tx, the relaxation pathway 
is that for which the corresponding operator Ox

1 leads to a large 
relaxation term ^x. 

Our intention was to develop a qualitative procedure, which 
employs these two conditions (i) and (ii). For this purpose it is 
desirable to have Rx in a form where the coupling with all higher 
excited states is contained in one integral. This is achieved by 
using the elementary inequality between n real numbers28 

(a, + a2 + ...a„)2 

< (a,2 + a2
2 + ...a2) (6) 

If we define ak as 

(I00IOx
1IA:00) 

°k ~ (EF-Ei00)1'2 ( 7 ) 

the multiplicative property of Ox
1 and the left-hand side of (6) 

(27) Lim, E. C. J. Phys. Chem. 1986, 90, 6770. 
(28) See, for example: Bronstein, I. N.; Semendjajew, K. A.; Taschenbuch 

der Mathematik; Deutsch: Frankfurt, 1984; p 124. 
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lead to an approximate relaxation term 

R"~~2nx 

(I00IOx
1IA:00) 

Ei00Y'2 £(£t°°-

•sLT* , 0 V d T 

Here the function ^x
00 is defined as 

^x00 = £ 
**' 

OO 

k**2(Ek°° - Ex
00YI2 

(8) 

(9) 

and the sums in (8) and (9) run over the same Hx excited states 
as in eq 5. ^x

00 resembles a perturbed first-order wave function.29 

The derivative of the first excited state wave function with respect 
to the distortion is constructed as a superposition of all unperturbed 
4>i°°. The weight of a particular 4>k°° in the superposition is 
regulated by the energetic distance to the first excited state. 
Inequality (6) shows that the absolute value of Rx is a lower bound 
to the absolute value of the exact relaxation term, Rx 

1**1 * l*xl (10) 

Despite the fact that /Jx is only an approximation to Rx it has the 
advantage that the interaction of the first excited state with all 
higher states is contained in only one integral (see eq 8). This 
fact makes /Jx an appropriate starting point for the design of a 
qualitative method based on the conditions (i) and (ii). 

4.1 Implementing Condition (i). Rx can be used to derive a 
simple quantity which permits us to assess how condition (i) holds 
for a pathway symmetry, Tx. If we assume the various Tx have 
comparable product functions Ox

1^1
00 (see eq 8), the integration 

in (8) leads to a large Zix, provided the absolute functional values 
of Xpx

00 are large at many points in space. This property of ^x
00 

should lead to a large norm of ^x
00 which is given by the integral 

S ̂ x0Vx00 dr = E 
*-2(£ t°°-£,«») 

- A (H) 

where the orthonormality of the 4>k°° has been used. For a par
ticular Tx, condition (i) is favorable provided for that Tx a large 
number of higher excited states with proper symmetry is close 
to the first excited state. Such a situation would be indicated by 
a large value of/x, and we call/x the efficiency factor for the 
representation Tx. Thus, the likelihood of a given Tx to be an 
important symmetry species for a relaxation pathway can be 
determined by using numerical fx values. 

4.2 Implementing Condition (ii). In order to determine how 
condition (ii) holds for a pathway symmetry Tx, we define a 
function px°° as 

Px 
00= £ 0i°° 4>k°° 

Zi(Ek0O-E1
00Y'2 = ^1

0Vx (12) 

which contains products between many electron functions of the 
first excited state ^1

00 and the wave functions 4>k°° of all interacting 
higher excited states weighted by their energy difference. Using 
this Px

00, Rx is given by 

*- - i [ /0^H2 
(13) 

It is important to realize that in eq 13 only one px°° exists for a 
particular pathway symmetry Tx, whereas a manifold of pathways 
and operators, Ox

1, all transforming as Tx, might exist. Conse
quently, the unique form of px°° can be used to select the relaxation 
pathway from the manifold of available paths. Condition (ii) 
provides the key to the procedure to be followed: A pathway is 
energetically favorable provided it corresponds to an Ox giving 
rise to a large Rx. This condition implies that the form of the 
operator function Ox should match the given form of px°° such 

(29) See, for example: Eyring, H.; Walter, J.; Kimball, G. E.; Quantum 
Chemistry; Wiley: New York, 1964; eq 7.31. 

that the integrand Ox
1Px

00 (see eq 13) has large functional values 
of the same sign at many points in space. In section 6 this 
matching condition is used to derive a qualitative criterion which 
allows the form of px°° to be used for the detection of the relaxation 
pathway. 

Thus, the procedure comprises two succesive stages: in a first, 
the symmetry species, Tx, having the largest/x value is determined, 
and Tx is assumed to be the symmetry species of the pathway; 
in a second, px°° is used to select from the Tx manifold of paths 
the favorable relaxation pathway. 

5. Relaxation Pathways and Interacting Molecular Orbitals 
As a qualitative tool to determine the symmetry Tx of a re

laxation pathway, the efficiency factors fx were introduced in 
section 4. In addition the function px°° was suggested as a device 
to specify the relaxation pathway. In this section we formulate 
these quantities in terms of molecular orbitals and show how they 
are related to the concept of interacting orbitals. 

Equations 11 and 12 for/x and px°°, respectively, were derived 
by assuming that ^1

00 and all <j>k°° are eigenfunctions of the 
electronic Hamiltonian for the ground-state geometry. Because 
we are interested in a qualitative procedure, we consider ^1

00 and 
all <pk°° to be approximated by one singlet determinantal wave 
function30 composed of SCF molecular orbitals, \(p°°}, calculated 
at the ground-state geometry. Moreover, we assume that the first 
excited state wave function ^1

00 is characterized by the HOMO-
LUMO excitation h-l. In addition, only interactions of the first 
excited state with higher excited states are accounted for whose 
wave functions 4>k°° refer to single excitations h'-l'. Here, h'and 
/' designate all occupied and unoccupied orbitals, respectively, 
which are different from the frontier orbitals. A further sim
plification arises from the fact that the operator Ox is a one-
electron operator: only these parts of the electronic Hamiltonian 
depend explicitly on the nuclear coordinates. By using Slater's 
rules for expectation values over determinantal wave functions,31 

we realize that the integrals (I00IOx
1J^c00) of eq 8 are nonvanishing 

provided two conditions hold, namely, h' = h but /' ^ / and /' 
= / but h' ^ n.7 The qualitative character of the proposed scheme 
implies that the eigenvalues E1

00 and Ek°° in eq 9 can be ap
proximated by the corresponding expectation values.30 When we 
also neglect all two-electron integrals over molecular orbitals, the 
efficiency factor /x is now given by 

A = En- 1 
i=/+l t OO _ , 0 0 + E 

- 1 e "-" .00 
(14) 

Here, ih°° and t,00 are the energies of the HOMO and LUMO, 
respectively. In the first part of (14) the index i runs over all 
unoccupied orbitals of symmetry species T11 interacting with the 
LUMO. T11 is fixed by the condition that the triple direct product 
Tt X TxX T11 contains the totally symmetric representation. In 
the last term of (14) i ranges over all occupied orbitals of symmetry 
species T„ which interact with the HOMO. T„ is given by the 
requirement of containing the totally symmetric representation 
in the triple direct product Th X Tx X r„. Now, condition (i) of 
section 4 for a pathway symmetry Tx is recognized as a condition 
at the MO level. A Tx is favorable provided that for Tx a large 
number of unoccupied and occupied orbitals have the proper 
symmetry to interact with the LUMO and HOMO, respectively. 
In addition they should have small energy spacings with respect 
to the frontier orbitals. Such a favorable situation is indicated 
by a large/x value. In order to employ condition (ii) of section 
4 at the MO level, /Jx is formulated as 

R> r unocc ( , , , 0 0 I O x V 0 ) 

Inx o m (e , 0 0 -* , 0 0 ) 00\l/2 

ceo-. (^0 0IOxV0) 
I^ V-

0Y 

In 

(6*°° - e,°°V/2 

(15) 

(30) Roothaan, C. C. J. Rev. Mod. Phys. 1951, 23, 69, eq 66. 
(31) Slater, J. C. Quantum Theory of Molecules and Solids; McGraw-

Hill: New York, 1963; Vol. 1, p 285. 
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The HOMO and LUMO are designated by \<ph°°) and |w°°), 
respectively; the sums run over the same set of molecular orbitals 
as in (14). The function px°° appearing in (15) is now given as 

UnOCC (ZJ 1
0 0US; 0 0 

PX°° = E M - T ^ -
occ-1 , . 0 0 , - OO 

e/o°)i/2 £1 (eA°° - e,00)'/2 (16) 

Equation 15 shows that Rx arises from orbital interactions me
diated by the operator Ox

1. Thus, we have related the determi
nation of a favorable relaxation pathway to orbital interactions, 
a concept which can be widely used for the rationalization of a 
broad range of chemistry.32 Rx is also the square of an integral 
over the function Ox

1Px
30 (see eq 15). Here, px°° is defined by 

(16), and it contains a sum of products of orbitals weighted by 
their energy difference. We call px°° the overlap function for the 
pathway symmetry Tx. It is conceptually related to the transition 
density used for ground-state surfaces by Bader5 and for excited 
states by Devaquet8 and Nakajima.7 However, px°° is more general 
because it contains all orbitals appropriate for interaction and their 
energy. Thus, the energetic criterion, used previously2"4,8 to focus 
on the state located above the considered state, is extended, and 
it is incorporated at the MO level into px°° (see eq 16). Due to 
the arbitrary phase factors of molecular orbitals, however, which 
can be plus or minus one, Px

00 is still undefined because the signs 
of the products in the sums of eq 16 are arbitrary. In order to 
define px°° unambiguously and to make Rx large, we select in all 
subsequent applicatons the phase factors such that the norm of 
Px00 has its maximal value. 

On the basis of the outline above, the following procedure for 
finding relaxation pathways is suggested: an SCF calculation for 
the molecule at its ground-state geometry having the point group 
G is performed. For any irreducible representation Tx of G, 
efficiency factors fx are calculated by means of (14). If for one 
or several Tx large values are derived, (16) is used to produce 
contour plots of the overlap function px°°. In the next section a 
recipe is given as to how these plots can be qualitatively applied 
to find the relaxation pathway. 

6. Form of the Overlap Function and Preferred Relaxation 
Pathways 

In section 5 the efficiency factors fx and the overlap function 
Px00 for a representation Tx were given at the MO level. A 
favorable Tx for a relaxation pathway should be indicated by a 
large/x value. However, the symmetry alone does not specify the 
pathway, because for one I \ a variety of nuclear motions all 
transforming as Tx might exist. In order to find the relaxation 
pathway we use the fact that it is characterized by an efficient 
operator Ox

1 which matches the overall form of px°° such that the 
integration, giving .Rx (see eq 15), leads to a large value. In the 
following, we use this matching condition to find a recipe for using 
the form of px°° to identify the relaxation pathway. 

Consider a molecule of N atoms. At any atomic ground-state 
position of an atom we can fix a local coordinate system whose 
axes are parallel to the space fixed coordinate system. Changes 
of the atomic positions along the various axes of the local coor
dinate systems form a set of cartesian vectors from which sym
metry coordinates S< are constructed. The operator Ox

1 is com
posed of the operators Hw and H01 (see eq 4), and Hi0 is given 
by 

H1 

~[\axA)\aSl)
 + \ayA)\Isl)

 + \azA)X 

(S)+Ms)L' 
where the chain rule for composite functions33 has been applied. 

(32) Albright, T. A.; Burdett, J. K.; Whangbo, M. Orbital Interactions in 
Chemistry; Wiley: New York, 1985. 

(33) See, for example: Spiegel, M. R. Advanced Calculus; McGraw Hill: 
New York, 1963; p 106. 
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Figure 1. Relations between the form of the operator function for a 
motion of atom A along the x-axis and the form of the overlap function 
Px

00 making that motion favorable or unfavorable. 

The expression for Z/01 is derived from (17) by writing j instead 
of i. Inspection of (17) indicates that Hw is a sum of operators 
for the forces acting on the atoms along the local coordinate axes. 
Any operator is multiplied by a factor which is an element of the 
matrix transforming from the set of symmetry coordinates [S1] 
to the local cartesian coordinates. These factors guaruantee that 
H10 is symmetry adapted. The force operator for the force acting 
on atom A along the xA-axis is given by34 

AA*I 
(18) 

Here, 1̂ is the distance of the electron from the origin of the local 
coordinate system for atom A, and X1 is the x-coordinate of the 
electron position. iVA is the nuclear charge of atom A. The 
operators for the forces along yA and zA are derived by writing 
yx or Z1, respectively, instead of X1 in (18). We realize that all 
force operators in (17) transform as the local cartesian axis. The 
operator (dH/dxA)°° decreases fast when rl increases (see eq 18) 
indicating that for a significant contribution of atom A to the 
integral in (15), the form of px°° near A is important. In Figure 
1 various possible forms of the overlap density function px00 in 
the x,y-pla.ne of the local coordinate system are schematically 
depicted. In addition, regions of (dH/dx^)00 with positive and 
negative functional values are symbolically indicated. The re
sulting positive and negative areas of the integrand (dH/dx/^fpX00 

are also given (see Figure 1). If px°° near atom A has the form 
of type (a), (b), or (c) not only in the x,>>-plane but also in all 
planes being parallel to the xj>-plane, a large integral over 
(dH/dxZt)00Pk00 is dervied. This is because the integrand is either 
positive or only at a few points in space, zero. Consequently, such 
forms of px°° near A favor the motion of atom A along the x-axis. 
If, however, px°° near atom A has the forms (d), (e), or (f), the 
position of atom A should remain unchanged. This is due to the 
fact that integration over (dH/dxA)00PX00 leads to a small integral, 
because any positive functional value of the integrand is matched 
by a corresponding negative value (see Figure 1). The overlap 
function px°° extends over all regions of the molecule and 
transforms as Tx. Therefore, inspection of px°° and analysis of 
the forms near all atoms by means of Figure 1 should indicate 
the most effective relaxation pathway with symmetry Tx. 

7. A Scheme for the Determination of Relaxation Pathways 
In the previous sections, the efficiency factors/x and the overlap 

function px°° were introduced as a tool to determine qualitatively 
molecular geometry changes following electronic excitation. After 
formulating fx and px°° at the MO level a complete scheme for 

(34) Nakatsuji, H.; Koga, T. In The Force Concept in Chemistry, Deb, 
B. M., Ed.; Van Nostrand: New York, 1981; Chapter 3, p 137. 
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applications can be given. Molecular orbitals of the molecule in 
its ground-state minimum geometry having a point group G are 
calculated. Subsequently, the efficiency factors fx of section 5 
are determined by means of eq 14 for any irreducible repre
sentation Tx of G. If for particular Tx large values of fx are 
obtained, those Tx are considered to be symmetry species of the 
relaxation pathway. In order to find which nuclear motions 
constitute the pathway, contour plots of /Ox

00 as defined by eq 16 
are inspected. By using the criterion for nuclear motions as 
contained in Figure 1, the form of these plots near the various 
atoms should indicate molecular geometry changes which make 
up the energetically favorable relaxation pathway. 

8. Discussion 

In the previous sections relaxation pathways were considered 
which lead from the point on the first excited-state surface with 
ground-state geometry to the excited-state equilibrium geometry. 
A two-step scheme has been suggested where in the first step the 
pathway symmetry Tx is determined by means of the efficiency 
factors/x. In the second step, the favorable relaxation pathway 
is selected from the manifold of pathways transforming as Tx by 
inspecting plots of the overlap function px°°. In this section we 
relate the procedure to previous work, and an attempt is made 
to identify its limitations. Central to the scheme is the idea that 
along the pathway the energy lowering is large provided that a 
large number of higher lying excited states is available to interact 
with the first excited state. This concept uses the accepted ex
perience that the energy lowering is significant when the dimension 
of the basis set into which a wave function is expanded is large.35 

1. Introduction 

In the preceding paper in this issue,1 a qualitative procedure 
was proposed for determining molecular geometry changes fol
lowing electronic excitation. According to the Frank-Condon 
principle, vertical excitation produces an excited state of a molecule 
where the ground-state geometry is still retained. After excitation, 
the geometry rearranges on the excited-state surface along a 
relaxation pathway which leads to the excited-state minimum 
geometry. Such a pathway can be described by a superposition 
of geometry changes along the various symmetry coordinates, Sx, 
transforming as the irreducible representations, Tx, of the 
ground-state point group, G.1 In order to determine which Tx are 
symmetries for the relaxation pathway, the efficiency factors/x 

were proposed.1 

(1) Bachler, V.; Polansky, O. E., preceding paper in this issue. 
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The extension to many excited states also holds for the overlap 
function px°° which results from the transition densities between 
the first excited-state wave function and the members of the basis 
set consisting of wave functions of all higher excited states ap
propriate for interaction. In addition px°° contains, in an ap
proximate way, the energy difference between the interacting 
states. Therefore, the suggested criterion is more general than 
the original Bader-Pearson concept, where only the most important 
member in the basis set is used, namely the wave function for the 
state located above the considered state. Important is the as
sumption that the first excited state is well approximated by one 
singlet wave function characterized by the HOMO-LUMO ex
citation. Implicit in this is that the CI expansion of that state 
is dominated by the HOMO-LUMO configuration constructed 
from the SCF ground-state orbitals. This assumption may fail 
when the first excited state is totally symmetric. In this case the 
ground-state configuration enters significantly into the CI ex
pansion for the first excited state. Therefore, we conclude the 
suggested procedure should be more reliable for nontotally sym
metric than for totally symmetric first excited states. 
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(35) The relation between an increase of a basis set and the resulting 
energy lowering is a consequence of the theorem of Hylleraas and Undheim 
(Hylleraas, E. A.; Undheim, B. Z. Physik 1930, 65, 759) and MacDonald 
(Mac Donald, J. K. L. Phys. Rev. 1933, 43, 830). 

unocc l occ-1 

The quantities t;00 and eh°° are the energies of the lowest unoc
cupied molecular orbital (LUMO) and the highest occupied 
molecular orbital (HOMO), respectively. They are calculated 
at the ground-state geometry which is indicated by the superscript 
00. In the first term of eq 1, / ranges over unoccupied molecular 
orbitals located above the LUMO. In addition the summation 
is restricted to orbitals which have the proper symmetry, T„, to 
interact with the LUMO when the pathway is of Tx symmetry. 
In the second term of eq 1, / runs over orbitals having lower energy 
than the HOMO. The sum comprises only those orbitals which 
belong to the symmetry species, T„ being appropriate for an 
interaction with the HOMO when the pathway transforms as Tx. 
The form of eq 1 shows that / x is large provided many orbitals 
of proper symmetry are present and are energetically close to the 
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